Towards a Dynamical Collision Model of Highly Porous Dust Aggregates
نویسندگان
چکیده
In the recent years we have performed various experiments on the collision dynamics of highly porous dust aggregates and although we now have a comprehensive picture of the micromechanics of those aggregates, the macroscopic understanding is still lacking. We are therefore developing a mechanical model to describe dust aggregate collisions with macroscopic parameters like tensile strength, compressive strength and shear strength. For one well defined dust sample material, the tensile and compressive strength were measured in a static experiment and implemented in a Smoothed Particle Hydrodynamics (SPH) code. A laboratory experiment was designed to compare the laboratory results with the results of the SPH simulation. In this experiment, a mm-sized glass bead is dropped into a cm-sized dust aggregate with the previously measured strength parameters. We determine the deceleration of the glass bead by high-speed imaging and the compression of the dust aggregate by x-ray micro-tomography. The measured penetration depth, stopping time and compaction under the glass bead are utilized to calibrate and test the SPH code. We find that the statically measured compressive strength curve is only applicable if we adjust it to the dynamic situation with a “softness” parameter. After determining this parameter, the SPH code is capable of reproducing experimental results, which have not been used for the calibration before.
منابع مشابه
Numerical simulations of highly porous dust aggregates in the low-velocity collision regime*
Context. A highly favoured mechanism of planetesimal formation is collisional growth. Single dust grains hit each other with relative velocities produced by gas flows in the protoplanetary disc. They stick together with van der Waals forces and form fluffy aggregates up to a centimetre size. The mechanism responsible for any additional growth is unclear since the outcome of aggregate collisions...
متن کاملThe Physics of Protoplanetesimal Dust Agglomerates. III. Compaction in Multiple Collisions
To study the evolution of protoplanetary dust aggregates, we performed experiments with up to 2600 collisions between single, highly-porous dust aggregates and a solid plate. The dust aggregates consisted of spherical SiO2 grains with 1.5 μm diameter and had an initial volume filling factor (the volume fraction of material) of φ0 = 0.15. The aggregates were put onto a vibrating baseplate and, t...
متن کاملCollisions of inhomogeneous pre-planetesimals
Context. In the framework of the coagulation scenario, kilometre-sized planetesimals form by subsequent collisions of preplanetesimals of sizes from centimetre to hundreds of metres. Pre-planetesimals are fluffy, porous dust aggregates, which are inhomogeneous owing to their collisional history. Planetesimal growth can be prevented by catastrophic disruption in pre-planetesimal collisions above...
متن کاملSimulation of Pre-planetesimal Collisions with Smoothed Particle Hydrodynamics
It is widely accepted that planets form in protoplanetary discs. These discs, which are produced as a byproduct of stars in the collapse of a molecular cloud [23], initially consist of gas and dust, which interact with each other. The interaction induces size-dependent relative velocities between dust aggregates: the effects of Brownian motion, radial drift, vertical settling, and turbulent mix...
متن کاملThe four-population model: a new classification scheme for pre-planetesimal collisions
Context. Within the collision growth scenario for planetesimal formation, the growth step from centimetre-sized pre-planetesimals to kilometre-sized planetesimals remains unclear. The formation of larger objects from the highly porous pre-planetesimals may be halted by a combination of fragmentation in disruptive collisions and mutual rebound with compaction. However, the right amount of fragme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008